Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
J Environ Manage ; 341: 118015, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37150173

RESUMO

Agriculture produces food, fiber and biofuels for the world's growing population, however, agriculture can be a major contributor of nitrogen (N) losses including emissions of ammonia (NH3), nitrous oxide (N2O) and nitrate (NO3-) leaching and runoff. A Canadian Agricultural Nitrogen Budget for Reactive N (CANBNr) model was developed to estimate the soil N balance in 3487 soil landscape of Canada polygons from 1981 to 2016. The CANBNr model integrates NH3 emission from fertilizers, manure from housing, storage and field, as well as direct/indirect N2O emissions from fertilizers, manures, crop residues and soil organic matter. The NO3- leaching is estimated based on the residual soil N (RSN) at harvest and drainage derived with the DeNitrification-DeComposition (DNDC) model. From 1981 to 2016, the N input from fertilizer and N fixation increased at a greater rate than N removal in harvested crops in all provinces of Canada, resulting in an increase in the RSN and N losses. In 2016, the Prairie provinces had lower N losses (11.7 kg N ha-1) from N2O, NH3 and NO3- compared with 43.2 kg N ha-1 in central Canada, and 76.5 kg N ha-1 in Atlantic Canada. However, the Prairie provinces had 84.3% of the total Canadian farmland (74.3% of the total Canadian N input), while central Canada had 12.9% of Canadian farmland (21.7% of the total Canadian N input). In the Prairie provinces, the total N2O loss from fertilizer N ranged 4.4-8.6 Gg N whereas NH3 loss ranged from 17.1 to 44.6 Gg N and these values were influenced by both emission intensity and total land area. Total N2O losses from manure were highest in Alberta, Ontario and Quebec resulting in 4.8, 4.4, and 3.4 Gg N and NH3 losses from manure were also highest in these 3 provinces at 61.1, 45.2 and 40.4 Gg N, respectively. Nitrate leaching was impacted by drainage volumes, soil type and N inputs. In the non-growing season, NO3- leaching losses (36-yr average) were 63.3 Gg in Ontario and 57.5 Gg N in Quebec compared with 20.8 Gg N for Ontario and 35.5 Gg N for Quebec in the growing season. In contrast, the Prairie provinces showed higher NO3- leaching in the growing season (23.1-37.4 Gg N) than in the non-growing season (10.4-13.7 Gg N). In summary, total fertilizer N increased the most over the 36 years in the Prairies which resulted in increased RSN and N leaching losses that will require further intervention.


Assuntos
Fertilizantes , Solo , Solo/química , Nitratos , Esterco , Agricultura , Nitrogênio/análise , Ontário , Produtos Agrícolas , Óxido Nitroso/análise
2.
Sci Total Environ ; 759: 143433, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33198998

RESUMO

Process-based models are effective tools for assessing the sustainability of agricultural productivity and environmental health under various management practices and rotation systems. The objectives of this study were to (1) calibrate and evaluate the DeNitrification-DeComposition (DNDC) model using measurements of yields, nitrogen (N) uptake, soil inorganic N, soil temperature, soil moisture and nitrous oxide (N2O) emissions under long-term fertilized continuous corn (CC) and corn-oats-alfalfa-alfalfa (COAA) rotation systems in southwest Ontario from 1959 to 2015, Canada, and (2) explore the impacts of four diverse rotation systems (CC, COAA, corn-soybean-corn-soybean (CSCS) and corn-soybean-winter wheat (CSW)) on corn yields and annual N2O emissions under long-term climate variability. DNDC demonstrated "good" performance in simulating corn, oats and alfalfa yield (normalized root mean square error (nRMSE) < 20%, Nash-Sutcliffe efficiency (NSE) > 0.5 and index of agreement (d) > 0.8). The model provided "fair" to "good" simulations for corn N uptake and soil inorganic N (NSE > 0.2 and d > 0.8), and also daily soil temperature and soil moisture (nRMSE <30% and d > 0.7) for both calibration and validation periods. The model demonstrated "good" performance in estimating daily and cumulative N2O emissions from both the continuous and rotational corn, whereas it produced "poor" to "good" predictions for N2O emissions from the rotational oats and alfalfa crops, however, the emissions from these crops were very low and the relative magnitude of these emissions between all crops investigated were well predicted. The lowest N2O emissions were from COAA followed by CSCS, CSW then CC. The highest corn yields were from COAA, followed by CSW, CSCS, then CC. This study highlights how modelling approaches can help improve the understanding of the impacts of diversified rotations on crop production and greenhouse gas emissions and contribute towards developing policies aimed at improving the sustainability and resiliency of cropping systems.

3.
J Environ Qual ; 49(6): 1730-1737, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33089514

RESUMO

Little research exists on short-term legacy effects of feedlot manure application on soil mesofauna. This long-term (since 1998) study was on an irrigated clay loam soil in southern Alberta cropped to barley (Hordeum vulgare L.). We sampled the soil 3-4 yr (2017-2018) into the legacy period following 17 annual manure applications (1998-2014). The selected treatments sampled were stockpiled feedlot manure containing straw bedding applied at 0, 13, 39, and 77 Mg ha-1 (dry wt.). Intact soil cores were taken at three depth intervals (0-3, 3-6, and 6-9 cm) in the fall over 2 yr to determine the densities of Acari (mites) suborders and Collembola (springtails) families. Significant (P ≤ .05) application rate effects occurred on Oribatida and Astigmata after 3 yr (but not after 4 yr) into the legacy phase, whereas Prostigmata were unaffected. Densities of Astigmata after 3 yr were 3.2- to 4.1-fold greater at the 77 Mg ha-1 rate compared with three lower rates. Significant application rate effects occurred on Entomobryidae, Isotomidae, and Onychiuridae after 4 yr (but not after 3 yr), with no treatment effects on Neelidae. Densities of mesofauna were generally greater at higher than at lower rates, except for Entomobryidae in 2018, where the reverse trend occurred. Significant application rate effects were attributed to lower soil bulk density and greater volumetric soil water content and soil organic carbon. Therefore, legacy effects of feedlot manure application generally persisted on soil mesofauna 3-4 yr into the legacy phase but depended on mesofauna type, year, and depth.


Assuntos
Esterco , Solo , Agricultura , Alberta , Carbono , Humanos
4.
PLoS One ; 13(11): e0207370, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30444929

RESUMO

The impact of climate change on agricultural systems is a major concern as it can have a significant effect on the world food supply. The objective of this study was to evaluate climate change impacts on crop production and nitrate leaching in two distinct climatic zones in Canada. Spring wheat (Triticum aestivum L.) was selected for the semiarid regions of Western Canada (Swift Current, SK) and maize (Zea mays L.) was chosen for the more humid regions of central Canada (Woodslee, ON). Climate scenarios were based upon simulations from a Canadian Regional Climate Model (CanRCM4) under two Representative Concentration Pathways (RCP4.5 and RCP8.5) and crop simulations were conducted using the Decision Support System for Agrotechnology Transfer (DSSAT) model. Compared to the baseline climate scenario, wheat yields increased by 8, 8, 11, 15%, whereas maize yields decreased by 15, 25, 22, 41% under RCP4.5 2050s (2041-2070), RCP4.5 2080s (2071-2100), RCP8.5 2050s and RCP8.5 2080s scenarios, respectively. Annual nitrate leaching increased by 19, 57, 73, 129% at Swift Current and by 84, 117, 208, 317% at Woodslee under the four scenarios, respectively. Adaptation measures suggested that fertilizer N rate for spring wheat should be increased to 80-100 kg N ha-1 to obtain optimal yields although this will result in an additional risk of 5-8 kg N ha-1 nitrate leaching at Swift Current. The fertilizer N rate of 150 kg N ha-1 was found to be suitable for high maize yields at Woodslee. New wheat and maize cultivars with long growing seasons would enable crop growth to match the phenological stage and hence maintain high crop yields to adapt to increased temperatures in the future.


Assuntos
Mudança Climática , Produção Agrícola , Produtos Agrícolas/crescimento & desenvolvimento , Modelos Biológicos , Solo , Água , Canadá
5.
J Environ Qual ; 47(4): 820-829, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30025062

RESUMO

Surface runoff and tile drainage are the main pathways for water movement and entry of agricultural nitrate into water resources. The objective of this 5-yr study was to characterize the partitioning of water flow and nitrate loss between these pathways for a humid-temperate Brookston clay loam soil under 54 to 59 yr of consistent cropping and fertilization. Cropping treatments included monoculture corn ( L., MC), continuous bluegrass ( L.) sod (CS), and a corn-oat-alfalfa ( L.)-alfalfa rotation (RC-RO-RA1-RA2). Fertilization treatments included annual fertilizer addition (F) and no fertilizer addition (NF). Tile drainage and surface runoff occurred primarily during the nongrowing season (November-April), and they were highly correlated with the mean saturated hydraulic conductivity of the near-surface soil profile. Tile drainage accounted for 69 to 90% of cumulative water flow and 79 to 96% of cumulative nitrate loss from fertilized rotation and CS, whereas surface runoff accounted for the majority of the nitrate losses in MC (i.e., 75-93% of water flow and 65-96% of nitrate loss). Cumulative nitrate losses were highest in the RC-F (152 kg N ha), RC-NF (101 kg N ha), RA2-F (121 kg N ha), and RA2-NF (75 kg N ha) plots, and these high losses are attributed to N mineralization from the plowed alfalfa and fertilization (if applicable). Fertilization increased cumulative nitrate loss in tile drainage from all treatments, whereas no fertilization increased cumulative nitrate loss in surface runoff from the rotation. Cropping system and fertilization on clay loam soil changed how water flow and nitrate loss were partitioned between tile drainage and surface runoff.


Assuntos
Agricultura , Nitratos/análise , Poluentes Químicos da Água/análise , Fertilizantes , Solo , Movimentos da Água
6.
Sci Rep ; 6: 27173, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251365

RESUMO

We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 µm), silt (2-53 µm) and sand (53-2000 µm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg(-1) soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg(-1), but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation.

7.
BMC Genomics ; 17: 286, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27076191

RESUMO

BACKGROUND: Acropora cervicornis, a threatened, keystone reef-building coral has undergone severe declines (>90 %) throughout the Caribbean. These declines could reduce genetic variation and thus hamper the species' ability to adapt. Active restoration strategies are a common conservation approach to mitigate species' declines and require genetic data on surviving populations to efficiently respond to declines while maintaining the genetic diversity needed to adapt to changing conditions. To evaluate active restoration strategies for the staghorn coral, the genetic diversity of A. cervicornis within and among populations was assessed in 77 individuals collected from 68 locations along the Florida Reef Tract (FRT) and in the Dominican Republic. RESULTS: Genotyping by Sequencing (GBS) identified 4,764 single nucleotide polymorphisms (SNPs). Pairwise nucleotide differences (π) within a population are large (~37 %) and similar to π across all individuals. This high level of genetic diversity along the FRT is similar to the diversity within a small, isolated reef. Much of the genetic diversity (>90 %) exists within a population, yet GBS analysis shows significant variation along the FRT, including 300 SNPs with significant FST values and significant divergence relative to distance. There are also significant differences in SNP allele frequencies over small spatial scales, exemplified by the large FST values among corals collected within Miami-Dade county. CONCLUSIONS: Large standing diversity was found within each population even after recent declines in abundance, including significant, potentially adaptive divergence over short distances. The data here inform conservation and management actions by uncovering population structure and high levels of diversity maintained within coral collections among sites previously shown to have little genetic divergence. More broadly, this approach demonstrates the power of GBS to resolve differences among individuals and identify subtle genetic structure, informing conservation goals with evolutionary implications.


Assuntos
Antozoários/genética , Variação Genética , Genética Populacional , Animais , Conservação dos Recursos Naturais , República Dominicana , Espécies em Perigo de Extinção , Florida , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
8.
J Environ Qual ; 44(2): 503-11, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26023969

RESUMO

Phosphorus (P) loss in tile drainage water may vary with agricultural practices, and the impacts are often hard to detect with short-term studies. We evaluated the effects of long-term (≥43 yr) cropping systems (continuous corn [CC], corn-oats-alfalfa-alfalfa rotation [CR], and continuous grass [CS]) and fertilization (fertilization [F] vs. no-fertilization [NF]) on P loss in tile drainage water from a clay loam soil over a 4-yr period. Compared with NF, long-term fertilization increased concentrations and losses of dissolved reactive P (DRP), dissolved unreactive P (DURP), and total P (TP) in tile drainage water, with the increments following the order: CS > CR > CC. Dissolved P (dissolved reactive P [DRP] and dissolved unreactive P [DURP]) was the dominant P form in drainage outflow, accounting for 72% of TP loss under F-CS, whereas particulate P (PP) was the major form of TP loss under F-CC (72%), F-CR (62%), NF-CS (66%), NF-CC (74%), and NF-CR (72%). Dissolved unreactive P played nearly equal roles as DRP in P losses in tile drainage water. Stepwise regression analysis showed that the concentration of P (DRP, DURP, and PP) in tile drainage flow, rather than event flow volume, was the most important factor contributing to P loss in tile drainage water, although event flow volume was more important in PP loss than in dissolved P loss. Continuous grass significantly increased P loss by increasing P concentration and flow volume of tile drainage water, especially under the fertilization treatment. Long-term grasslands may become a significant P source in tile-drained systems when they receive regular P addition.

9.
J Environ Qual ; 43(2): 617-30, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25602663

RESUMO

Excessive N loading from subsurface tile drainage has been linked to water quality degradation. Controlled tile drainage (CTD) has the potential to reduce N losses via tile drainage and boost crop yields. While CTD can reduce N loss from tile drainage, it may increase losses through other pathways. A multiple-year field-scale accounting of major N inputs and outputs during the cropping season was conducted on freely drained and controlled tile drained agricultural fields under corn ( L.)-soybean [ (L.) Merr.] production systems in eastern Ontario, Canada. Greater predicted gaseous N emissions for corn and soybean and greater observed lateral seepage N losses were observed for corn and soybean fields under CTD relative to free-draining fields. However, observed N losses from tile were significantly lower for CTD fields, in relation to freely drained fields. Changes in residual soil N were essentially equivalent between drainage treatments, while mass balance residual terms were systematically negative (slightly more so for CTD). Increases in plant N uptake associated with CTD were observed, probably resulting in higher grain yields for corn and soybean. This study illustrates the benefits of CTD in decreasing subsurface tile drainage N losses and boosting crop yields, while demonstrating the potential for CTD to increase N losses via other pathways related to gaseous emissions and groundwater seepage.

10.
J Environ Qual ; 43(2): 587-98, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25602660

RESUMO

Nitrate lost from agricultural soils is an economic cost to producers, an environmental concern when it enters rivers and lakes, and a health risk when it enters wells and aquifers used for drinking water. Planting a winter wheat cover crop (CC) and/or use of controlled tile drainage-subirrigation (CDS) may reduce losses of nitrate (NO) relative to no cover crop (NCC) and/or traditional unrestricted tile drainage (UTD). A 6-yr (1999-2005) corn-soybean study was conducted to determine the effectiveness of CC+CDS, CC+UTD, NCC+CDS, and NCC+UTD treatments for reducing NO loss. Flow volume and NO concentration in surface runoff and tile drainage were measured continuously, and CC reduced the 5-yr flow-weighted mean (FWM) NO concentration in tile drainage water by 21 to 38% and cumulative NO loss by 14 to 16% relative to NCC. Controlled tile drainage-subirrigation reduced FWM NO concentration by 15 to 33% and cumulative NO loss by 38 to 39% relative to UTD. When CC and CDS were combined, 5-yr cumulative FWM NO concentrations and loss in tile drainage were decreased by 47% (from 9.45 to 4.99 mg N L and from 102 to 53.6 kg N ha) relative to NCC+UTD. The reductions in runoff and concomitant increases in tile drainage under CC occurred primarily because of increases in near-surface soil hydraulic conductivity. Cover crops increased corn grain yields by 4 to 7% in 2004 increased 3-yr average soybean yields by 8 to 15%, whereas CDS did not affect corn or soybean yields over the 6 yr. The combined use of a cover crop and water-table management system was highly effective for reducing NO loss from cool, humid agricultural soils.

11.
J Sci Med Sport ; 17(3): 322-5, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23707138

RESUMO

UNLABELLED: Recent reports that habitual marathon runners demonstrate higher levels of stiffness and cardiovascular risk factors have been of great interest to the medical and scientific community. Ultra-marathon running, that is any distance >42.2 km, is increasing in popularity; however, little is known regarding the physiological effects of the sport's unique training and racing practices on vascular health. OBJECTIVES: To characterize and compare the arterial compliance of male long-term (>5 years) ultra-marathoners with recreationally active controls, and examine the associations of training related practices with systemic arterial compliance. DESIGN: We employed a case-control comparison design using long-term habitual ultra-marathon runners (n=18) and an age matched cohort of normative recreationally active males. METHODS: Arterial compliance was measured at rest using radial applanation tonometry (CR-2000, HDI) for diastolic pulse contour analysis. Compliance was compared with normative data, participant characteristics, and associated exercise parameters. RESULTS: In representative ultra-endurance runners, large artery compliance of long-term participants was reduced compared with physically active age-matched controls (p=0.03) and is related to select training variables. Specifically, in a representative subset for whom we obtained detailed training data, decreased compliance was related to longer typical running distance per training session (r=-0.72, p=0.03); however, more broad definitions of frequency, intensity, and duration revealed no association for the runners as a whole. CONCLUSIONS: Given the known associations of arterial stiffness with future cardiovascular events, ultra-endurance runners may be at an increased risk of a cardiovascular event compared with their normally active counterparts.


Assuntos
Artérias/fisiologia , Manometria/métodos , Corrida/fisiologia , Adulto , Idoso , Estudos de Casos e Controles , Complacência (Medida de Distensibilidade) , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
12.
J Environ Manage ; 129: 652-64, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23910796

RESUMO

Controlled tile drainage can boost crop yields and improve water quality, but it also has the potential to increase GHG emissions. This study compared in-situ chamber-based measures of soil CH4, N2O, and CO2 fluxes for silt loam soil under corn and soybean cropping with conventional tile drainage (UTD) and controlled tile drainage (CTD). A semi-empirical model (NEMIS-NOE) was also used to predict soil N2O fluxes from soils using observed soil data. Observed N2O and CH4 fluxes between UTD and CTD fields during the farming season were not significantly different at 0.05 level. Soils were primarily a sink for CH4 but in some cases a source (sources were associated exclusively with CTD). The average N2O fluxes measured ranged between 0.003 and 0.028 kg N ha(-1) day(-1). There were some significantly higher (p ≤ 0.05) CO2 fluxes associated with CTD relative to UTD during some years of study. Correlation analyses indicated that the shallower the water table, the greater the CO2 fluxes. Higher corn plant C for CTD tended to offset estimated higher CTD CO2 C losses via soil respiration by ∼100-300 kg C ha(-1). There were good fits between observed and predicted (NEMIS-NOE) N2O fluxes for corn (R(2) = 0.70) and soybean (R(2) = 0.53). Predicted N2O fluxes were higher for CTD for approximately 70% of the paired-field study periods suggesting that soil physical factors, such as water-filled pore space, imposed by CTD have potentially strong impacts on net N fluxes. Model predictions of daily cumulative N2O fluxes for the agronomically-active study period for corn-CTD and corn-UTD, as a percentage of total N fertilizer applied, were 3.1% and 2.6%, respectively. For predicted N2O fluxes on basis of yield units, indices were 0.0005 and 0.0004 (kg N kg(-1) crop grain yield) for CTD and UTD corn fields, respectively, and 0.0011 and 0.0005 for CTD and UTD soybean fields, respectively.


Assuntos
Agricultura/métodos , Poluentes Atmosféricos/metabolismo , Monitoramento Ambiental/métodos , Solo/química , Zea mays/metabolismo , Dióxido de Carbono/metabolismo , Metano/metabolismo , Modelos Teóricos , Óxido Nítrico/metabolismo , Ciclo do Nitrogênio , Estações do Ano
13.
J Environ Qual ; 42(6): 1881-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25602428

RESUMO

The environmental impact of using wood chips instead of straw bedding with feedlot manure on transport and leaching potential from feedlot manure is unknown. Our main objective was to determine if transport of total N, total organic N, NO-N, and nonpurgeable organic C (NPOC) to subsurface soil was lower for soils amended with feedlot manure if combined with wood chips compared with straw. A secondary objective was to compare transport of N and NPOC with organic amendments versus inorganic fertilizer. Stockpiled feedlot manure (SM) with wood chip (SM-WD) or barley straw (SM-ST) bedding at 39 Mg (dry wt.) ha, and inorganic fertilizer (IN) at 100 kg N ha, was applied annually for 13 yr to a clay loam soil in a replicated field experiment in southern Alberta, Canada. Intact soil cores were taken in fall 2011 (0-30 cm depth) from the three treatments, and the residual N and NPOC were eluted from the soil cores. Total N, total organic N, and NPOC were determined on filtered (1.0 µm) effluent samples that are primarily dissolved fraction but may contain some small particulate N and C. Peak concentrations, flow-weighted mean concentrations, and mass loss of total N, total organic N, NO-N, and NPOC were significantly ( ≤ 0.05) lower by 35 to 86% for SM-WD compared with SM-ST. Mean recoveries were also significantly lower for SM-WD than SM-ST by 0.07 to 8% (absolute difference). The transport behavior was similar for SM-WD and IN treatment, but solute transport was greater for SM-ST than for IN. Application of stockpiled feedlot manure with wood chips instead of straw bedding may be a beneficial management practice to reduce transport and leaching potential of N fractions and NPOC.

14.
Eur J Appl Physiol ; 113(3): 785-92, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22971725

RESUMO

As sympathetic activity approximately doubles during intense lower body negative pressure (LBNP) of -60 mmHg or greater, we examined the relationship between surrogate markers of sympathetic activation and central arterial distensibility during severe LBNP. Eight participants were exposed to progressive 8-min stages of LBNP of increasing intensity (-20, -40, -60, and -80 mmHg), while recording carotid-femoral pulse wave velocity (cPWV), stroke volume (SV), heart rate, and beat-by-beat blood pressure. The spectral power of low frequency oscillations in SBP (SBP(LF)) was used as a surrogate indicator of sympathetically modulated vasomotor modulation. Total arterial compliance (C) was calculated as C = SV/pulse pressure. Both cPWV and C were compared between baseline, 50 % of the maximally tolerated LBNP stage (LBNP(50)), and the maximum fully tolerated stage of LBNP (LBNP(max)). No change in mean arterial pressure (MAP) occurred over LBNP. An increase in cPWV (6.5 ± 2.2; 7.2 ± 1.4; 9.0 ± 2.5 m/s; P = 0.004) occurred during LBNP(max). Over progressive LBNP, SBP(LF) increased (8.5 ± 4.6; 9.3 ± 5.8; 16.1 ± 12.9 mmHg(2); P = 0.04) and C decreased significantly (18.3 ± 6.8; 14.3 ± 4.1; 11.6 ± 4.8 ml/mmHg × 10; P = 0.03). The mean correlation (r) between cPWV and SBP(LF) was 0.9 ± 0.03 (95 % CI 0.79-0.99). Severe LBNP increased central stiffness and reduced total arterial compliance. It appears that increased sympathetic vasomotor tone during LBNP is associated with reduced aortic distensibility in the absence of changes in MAP.


Assuntos
Aorta/fisiologia , Pressão Arterial/fisiologia , Pressão Negativa da Região Corporal Inferior , Rigidez Vascular , Adulto , Aorta/fisiopatologia , Regulação para Baixo , Elasticidade/fisiologia , Teste de Esforço , Frequência Cardíaca/fisiologia , Humanos , Pressão Negativa da Região Corporal Inferior/efeitos adversos , Masculino , Análise de Onda de Pulso , Volume Sistólico/fisiologia , Sístole/fisiologia , Rigidez Vascular/fisiologia , Adulto Jovem
15.
J Sports Sci ; 30(16): 1777-85, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23025296

RESUMO

Mountain biking is a popular recreational pursuit and the physiological demands of cross-country style riding have been well documented. However, little is known regarding the growing discipline of gravity-assisted downhill cycling. We characterised the physiological demands of downhill mountain biking under typical riding conditions. Riding oxygen consumption (VO(2)) and heart rate (HR) were measured on 11 male and eight female experienced downhill cyclists and compared with data during a standardised incremental to maximum (VO(2max)) exercise test. The mean VO(2) while riding was 23.1 ± 6.9 ml · kg(-1) · min(-1) or 52 ± 14% of VO(2max) with corresponding heart rates of 146 ± 11 bpm (80 ± 6% HRmax). Over 65% of the ride was in a zone at or above an intensity level associated with improvements in health-related fitness. However, the participants' heart rates and ratings of perceived exertion were artificially inflated in comparison with the actual metabolic demands of the downhill ride. Substantial muscular fatigue was evident in grip strength, which decreased 5.4 ± 9.4 kg (5.5 ± 11.2%, P = 0.03) post-ride. Participation in downhill mountain biking is associated with significant physiological demands, which are in a range associated with beneficial effects on health-related fitness.


Assuntos
Ciclismo/fisiologia , Metabolismo Energético , Exercício Físico/fisiologia , Resistência Física/fisiologia , Esforço Físico/fisiologia , Aptidão Física/fisiologia , Adulto , Teste de Esforço , Feminino , Gravitação , Força da Mão , Frequência Cardíaca , Humanos , Masculino , Fadiga Muscular , Consumo de Oxigênio , Percepção , Recreação
16.
Appl Physiol Nutr Metab ; 37(4): 690-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22606960

RESUMO

We aimed to investigate the effects of a single session of prolonged strenuous exercise (PSE) on arterial stiffness by measuring pulse wave velocity (PWV) before and after competition in an ultramarathon. A total of 20 routine ultramarathon competitors (UM) completed baseline and postrace evaluation of central PWV (cPWV), upper-limb PWV (uPWV), and lower-limb PWV (lPWV) using carotid artery - femoral artery, carotid artery - finger, and femoral artery - toe segments, respectively. Fourteen additional age- and gender-matched normally active participants (NA) took part in the identical baseline evaluation but did not participate in the race. Average ultramarathon completion time was 30 h 47 min. Mean arterial blood pressure was reduced after exercise (before exercise (pre), 92 ± 7 mm Hg; after exercise (post), 84 ± 7 mm Hg; P < 0.001), whereas heart rate was increased (pre, 57 ± 10 beats·min(-1); post, 73 ± 12 beats·min(-1); P < 0.001). Also, lPWV (pre, 11.8 ± 3.6 m·s(-1); post, 9.6 ± 2.6 m·s(-1); P < 0.05) and uPWV (pre, 5.0 ± 0.53 m·s(-1); post, 4.4 ± 0.8 m·s(-1); P < 0.01) were reduced after exercise. No change in cPWV occurred (pre, 4.1 ± 0.8 m·s(-1); post, 3.9 ± 1.3 m·s(-1); P = 0.55). At baseline, the NA group had significantly increased cPWV in comparison with the UM group (UM, 4.1 ± 0.8 m·s(-1); NA, 7.4 ± 1.3 m·s(-1); P < 0.001). Acute participation in PSE influenced peripheral but not central arterial stiffness. Those who routinely participate in PSE have reduced central arterial stiffness as compared with normally active, age- and gender-matched controls.


Assuntos
Exercício Físico/fisiologia , Esforço Físico/fisiologia , Corrida/fisiologia , Rigidez Vascular/fisiologia , Adulto , Desempenho Atlético/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Pressão Sanguínea/fisiologia , Índice de Massa Corporal , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Fluxo Pulsátil/fisiologia
17.
Open Access J Sports Med ; 3: 89-106, 2012 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-24198592

RESUMO

The aim of this study was to review systematically the effects of exercise on left ventricular (LV) twisting mechanics in healthy individuals. Literature searches were conducted in electronic databases for articles reporting measures of LV twisting mechanics in healthy individuals before and during/after exercise. Upon review, 18 articles were analyzed. Studies were separated by exercise type into the following four categories to allow for detailed comparisons: submaximal, prolonged endurance, maximal, and chronic endurance. Despite an overall methodological quality of low to moderate and within-group variations in exercise intensity, duration, and subject characteristics, important trends in the literature emerged. Most important, the coupling of LV systolic twisting and diastolic untwisting was present in all exercise types, as both were either improved or impaired concomitantly, highlighting the linkage between systole and diastole provided through LV twist. In addition, trends regarding the effects of age, training status, and cardiac loading also became apparent within different exercise types. Furthermore, a potential dose-response relationship between exercise duration and the degree of impairment to LV twisting mechanics was found. Although some disagreement existed in results, the observed trends provide important directions for future research. Future investigations should be of higher methodological quality and should include consistent exercise protocols and subject populations in order to minimize the variability between investigations.

18.
Lab Chip ; 11(7): 1221-7, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21180744

RESUMO

We report a versatile capillary-based droplet reactor for the controlled synthesis of nanoparticles over a wide range of flow conditions and temperatures. The reactor tolerates large flow-rate differentials between individual reagent streams, and allows droplet composition to be varied independently of residence time and volume. The reactor was successfully applied to the synthesis of metal (Ag), metal-oxide (TiO(2)) and compound semiconductor (CdSe) nanoparticles, and in each case exhibited stable droplet flow over many hours of operation without fouling, even for reactions involving solid intermediates. For CdSe formed by the reaction of Cd oleate and Se, highly controlled growth could be achieved at temperatures of up to 250 °C, with emission spectra varying smoothly and reproducibly with temperature and flow-rate. The droplet reactor showed exceptional stability when operated under constant flow-rate and temperature conditions, yielding particles with well-defined band-edge emission spectra that did not vary over the course of a full day's continuous operation.

19.
J Environ Qual ; 39(5): 1771-81, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21043282

RESUMO

Phosphorus (P) loss from agricultural land in surface runoff can contribute to eutrophication of surface water. This study was conducted to evaluate a range of environmental and agronomic soil P tests as indicators of potential soil surface runoff dissolved reactive P (DRP) losses from Ontario soils. The soil samples (0- to 20-cm depth) were collected from six soil series in Ontario, with 10 sites each to provide a wide range of soil test P (STP) values. Rainfall simulation studies were conducted following the USEPA National P Research Project protocol. The average DRP concentration (DRP30) in runoff water collected over 30 min after the start of runoff increased (p < 0.001) in either a linear or curvilinear manner with increases in levels of various STPs and estimates of degree of soil P saturation (DPS). Among the 16 measurements of STPs and DPSs assessed, DPS(M3) 2 (Mehlich-3 P/[Mehlich-3 Al + Fe]) (r2 = 0.90), DPS(M3)-3 (Mehlich-3 P/Mehlich-3 Al) (r2 = 0.89), and water-extractable P (WEP) (r2 = 0.89) had the strongest overall relationship with runoff DRP30 across all six soil series. The DPS(M3)-2 and DPS(M3)-3 were equally accurate in predicting runoff DRP30 loss. However, DPS(M3)-3 was preferred as its prediction of DRP30 was soil pH insensitive and simpler in analytical procedure, ifa DPS approach is adopted.


Assuntos
Fósforo/análise , Solo/análise , Poluentes da Água/análise , Ontário , Solubilidade
20.
J Environ Manage ; 90(10): 3169-81, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19592153

RESUMO

With increasing amounts of nitrogen (N) being added to farmland in the form of fertilizer and manure to optimize crop yields, and more broadly, to meet the growing demands for food, feed and energy, there are public concerns regarding its possible negative impact on the environment. An optimal balance between N requirements for production versus efficient N use is required, so as to minimize N losses from the agricultural system. An agri-environmental indicator i.e., the Indicator of the Risk of Water Contamination by Nitrogen (IROWC-N) was developed to assess the risk of N moving from agricultural areas into groundwater and/or nearby surface water bodies. The indicator linked the quantity of mineral nitrogen remaining in the soil at harvest, i.e., the Residual Soil Nitrogen (RSN) indicator, and the subsequent climatic conditions during the winter period. The results were assessed in terms of nitrate lost through leaching and nitrate concentration in the drainage water, expressed in five IROWC-N risk classes. Unlike previous versions of the indicator, the current model provided a more complete description of the soil-water balance, including the calculation of rainfall interception by crops, surface runoff, actual evapotranspiration and soil-water contents. Consequently, the current IROWC-N estimates differed markedly from those obtained previously. Between 1981 and 2006, the risk of water contamination by N in Canada was small, and reflected what was happening in the three Prairie provinces where 85% of Canada's farmland is located. However, the aggregated IROWC-N index, which is a combination of all five risk classes, increased steadily by 2.3% per year, from 6.7 in 1981 to 10.6 in 2006. The proportion of farmland in the very low IROWC-N risk class decreased from 88 to 78%; correspondingly, the proportion in the low risk class increased from 2 to 12%. The proportion of farmland in the moderate-, high- and very high-risk classes changed by less than 3% over time. The trends in IROWC-N in the Atlantic provinces were significantly worse than the national trend; for example, in Atlantic Canada, the aggregated IROWC-N index tripled from 27.8 in 1981 to 87.5 in 2006. Increases in fertilizer use (except in British Columbia), increases in livestock numbers in Manitoba and the Atlantic provinces, and an increase in legume crop acreage were the main factors that contributed to the increase in IROWC-N estimates. Climatic factors were also involved, as droughts reduced yields, N uptake and N leaching in many regions of Canada in 2001.


Assuntos
Monitoramento Ambiental/métodos , Modelos Teóricos , Nitrogênio/análise , Poluentes Químicos da Água/análise , Canadá , Medição de Risco , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...